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Most chemists have encountered in their university 
study some kind of elementary kinetic theory of dilute 
gases. In many textbooks of physics or physical chem- 
istry, simple kinetic theory arguments about momen- 
tum transfer lead to an expression’s2 for the viscosity 
p of a dilute gas, in which the molecules are modeled 
as rigid spheres of mass m and diameter 0: p x 
dmkT/a2  (here kT is the Boltzmann constant times 
the absolute temperature). That is, relatively crude 
arguments lead to the dependence of the gas viscosity 
on the temperature and on the molecular mass and 
diameter. Of course, a much more refined kinetic 
theory has been developed, in which the deviations are 
found from the simple relation cited ab0ve.l Also the 
modeling of the molecules has become more realistic, 
with the inclusion of van der Waals attractive forces, 
interactions among dipole and quadrupole moments, 
and noncentral intermolecular forces. 

It is unfortunate that the simple kinetic theory for 
dilute polymer solutions has not found its way into the 
textbooks, since it gives considerable insight into 
structure-property relationships. When the polymer 
molecules are modeled crudely as elastic dumbbells, it 
is possible to develop the kinetic theory equations in 
just a few pages;3 such derivations have been given in 
the physics and chemistry research literature as early 
as 40 years ago, although not in suitable form for 
textbook use. 

For gases and for liquids made up of small molecules, 
the mechanical response is completely described by two 
“material constants”: the viscosity p and the density 
p. The vis~osity’~~ appears as the scalar proportionality 
constant between the stress tensor 7 and the rate-of- 
strain tensor T ( ~ ) :  

The Cartesian component rij of the stress tensor gives 
the force in the positive j direction acting across a unit 
surface perpendicular to the i direction, the force being 
exerted by the material of lesser i on the material of 
greater i. The Cartesian components of the rate-of- 
strain tensor are given by y(l)ij = dvj/dxi + d v i / d x j ,  
where ui is the ith component of the velocity vector and 
x i  is the ith Cartesian coordinate. Although the linear 
uNewtonian“ expression in eq 1 has been found to be 
entirely satisfactory for gases and simple liquids, it has 
been thoroughly established that polymeric liquids 
(polymer solutions and undiluted polymers (or “melts”)) 
are “non-Newtonian”; that is, eq 1 is not an appropriate 
“constitut,ive equation” (the relat,ion between 7 and one 
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or more kinematic tensors) for liquids containing 
long-chain molecules. 

What is the evidence for this? There are many rel- 
atively simple e~pe r imen t s~?~  that show major qualita- 
tive differences between Newtonian fluids and poly- 
meric fluids: 

a. When a rotating rod is inserted into a beaker of 
a Newtonian liquid, the fluid surface near the rod is 
lower than that near the beaker wall, because of cen- 
trifugal effects. When the rotating rod is inserted into 
a polymeric fluid, the fluid surface near the rod is higher 
than that near the beaker wall; that is, there are ad- 
ditional forces that can overcome the centrifugal forces 
and make the fluid climb up the rotating rod. The 
“rod-climbing” phenomenon is called the “Weissenberg 
effect”. 

b. When a Newtonian liquid is allowed to flow down 
a tilted trough, the fluid surface is found to be flat 
(except for meniscus effects a t  the wall). Polymeric 
fluids in the same experiment exhibit a small, but 
measurable, bulging of the fluid surface. 

c. When a Newtonian liquid is forced through a 
horizontal tube by means of a pressure difference and 
then the driving force is suddenly removed, the liquid 
stops moving. When the same thing is done for a 
polymeric liquid, it will “recoil” when the driving force 
is removed-that is, the fluid begins to retreat in the 
direction from whence it has come. It is as if the fluid 
“remembers” where it has been, but as it begins re- 
treating it gradually “forgets” and never returns to its 
original configuration (the way a rubber band will after 
it has been stretched). One often hears the anthropo- 
morphic term “fluids with fading memory” applied to 
polymeric liquids. 

d. When a cylinder with its axis in the z direction 
is suspended in a Newtonian fluid and caused to os- 
cillate in the x direction with very small amplitude, a 
secondary flow is induced such that the fluid far from 
the cylinder is pulled in toward the cylinder along the 
+ and -y axis and then propelled away from it in along 
the + and -x axis; this is the “acoustical streaming” 
effect. For the polymeric liquids, on the other hand, 
the direction of the induced secondary flow is reversed, 
with the fluid being sucked in along the x axis and 
expelled along the y axis. 

These fascinating polymer flow phenomena (and 
many others!) cannot be described by Newtonian fluid 
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mechanics a t  all-that is, by solving the equation of 
continuity, the equation of motion, and the Newtonian 
“constitutive equation” (eq 1) simultaneously. To de- 
scribe the flow of polymers, we have to a different 
constitutive equation. There have been many attempts 
to develop empirical constitutive equations, but 
guessing a tensorial relation to describe many rheolog- 
ical phenomena is a far more difficult assignment than 
the analogous problem in thermodynamics of guessing 
the equation of state for describing the pVT behavior 
of compressed gases and liquids (since van der Waals’ 
first guess back in about 1870, countless empiricisms 
have been and are still being proposed). In the past 
several decades considerable insight into the constitu- 
tive equations for polymeric fluids has been provided 
by kinetic theory. Such studies also enable us to say 
something about molecular orientation and stretching 
in various kinds of flow fields. 

The challenge to be addressed in this article, then, 
is the development of constitutive equations for poly- 
meric solutions and undiluted polymers (“melts”) by the 
use of kinetic theories; in these theories the constituent 
polymer molecules have to be modeled by some kind 
of simple mechanical system that portrays the essential 
structure and dynamical response. 
The Material Functions 

In order to test the kinetic theory results, there has 
to be a body of experimental data on a variety of simple, 
carefully controlled flow systems, in which the flow field 
and one or more stress components can be measured. 
The rapidly growing science of designing and inter- 
preting such measurements is called 
Here we do not discuss the experimental devices, tech- 
niques, and measurement errors but give only the 
definitions of a few of the “material functions” that are 
currently being measured. 

In a steady shear f low u, = qy, uy = 0, and u, = 0, it 
is possible to measure the shear stress and two nor- 
mal-stress differences. It is then conventional to define 
three material functions, the viscosity (q), the first 
normal stress coefficient (\kJ, and the second normal 
stress coefficient (\k2) by 

7 y x  = -qj/ ( 2 4  

I,, - IYY = - \ k1 j /2  (2b) 

(2C) 
These “viscometric functions”, q, \kl, and \kz, are all 
functions of the shear rate i.; both q and \kl are known 
to be positive for polymer solutions and melts, and \kz 
is negative and smaller than \kl in magnitude (experi- 
mental values of -\kz/\kk, between about 0.01 and 0.3 
have been reported in the literature, but recently ar- 
guments have been advancedz7 that suggest that 0.25 
should be an upper bound, a t  least for small values of 
the shear rate i.). The rod-climbing effect is strongly 
dependent on \kl and also somewhat dependent on \kz; 
the bulging of the liquid surface in the tilted trough 
experiment depends only on \kz. 

In a steady elgonational flow, u, = 62, u, = - ( l / z ) k x ,  
and uy = -(1/2)ky, one normal stress difference can be 
measured 

7,, - I,, = -q2 (3) 

IYY - I,, = - \ k z j / z  

(6) K. Walters, “Rheometry”, Wiley, New York, 1975. 
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Figure 1. Material functions for a 1.5% polyacrylamide (Separan 
AP30) solution in a 50/50 mixture (by weight) of water and 
glycerine. The  functions ~ ( q ) ,  ~ ’ ( o ) ,  and q”(o) are in Pa.s, and 
\kl(j.) is in Pas2; both i. and o are in s-l. The data are taken from 
J. D. Huppler, E. Ashare, and L. A. Holmes, Trans. SOC. Rheol., 
11, 159-179 (1967). 

and q is called the elogational viscosity; q is a function 
of the elongation rate i. 

Many time-dependent flows have been studied by 
polymer chemists. A particularly important one is the 
small-amplitude sinusoidal shear flow u, = Re(i/oei”t]y, 
uy = 0, and u, = 0, in which j / O  is in general a complex 
quantity and w is the frequency of oscillation; the no- 
tation Re( 1 means “the real part of”. Then because the 
amplitude of the oscillation is quite small, the shear 
stress is also sinusoidal: T ~ ,  = Re(~,,~e’”~l. We now 
define a complex viscosity q* by 

ryrxo = -q*$/o (4) 

and q* = q’ - iq” is a function of the frequency w. The 
normal stresses can also be measured, and they oscillate 
with a frequency of 2w about a nonzero mean. 

In Figure 1 we show some sample data for q(i.), 
q’(w), and q”(w). Keep in mind that for a Newtonian 
fluid q and q’ are both constant (the viscosity p )  and 
q” and \k1 are zero. 

Many other time-dependent shear and elongational 
experiments have been p e r f ~ r m e d , ~ , ~ ~  and other types 
of flows as well (e.g., biaxial stretching, eccentric-disk 
flows, squeezing flows). These experiments provide the 
basic data against which the kinetic theories have to be 
tested; one cannot overemphasize the need for carefully 
measured material functions on well-characterized li- 
quids. In addition, data on flow birefrigence8 and light 
scattering are important in testing molecular theories. 

Molecular Models 
Polymers are molecules of very large molecular 

weight, and there is an enormous variety in their 
chemical architecture. In this discussion we consider 
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Figure 2. Mechanical models for representing chainlike polymer 
molecules in kinetic theory: (a) Kirkwood-Riseman freely rotating 
bead-rod chain, (b) Kramers freely jointed bead-rod chain, (c) 
Rouse-Zimm freely rotating bead-spring chain, (d)  elastic 
dumbbell model. 

for the most part those polymers which are formed by 
stringing together certain repeating groups of atoms 
(monomers) in such a way that an extremely long chain 
is formed. Such a chain can be oriented in space, and 
in addition it has a lot of flexibility resulting from the 
large number of internal degree of freedom. The chain 
can appear in a coiled-up configuration, or it can be 
stretched out into a long string-like configuration. In 
Figure 2 we show several mechanical models that have 
been used in the kinetic theory of flexible, chainlike 
polymers: (a) the Kirkwood-Riseman freely rotating 
chain is made up of “beads” joined together by massless 
“rods”, but the angles between successive rods are fixed; 
(b) the Kramers freely jointed chain is composed of 
beads joined by rods, with universal joints at the beads; 
(c) the Rouse-Zimm chain is constructed from beads 
and “springs”, with universal joints; and (d) the elastic 
dumbbell is made up of just two beads and a spring. 
These models have been listed in decreasing order of 
complexity, but each model is supposed to represent a 
long, extensible molecule that can undergo rotational 
and uncoiling motions. The constant angles between 
the rods in the Kirkwood-Riseman chain describes in- 
herent stiffness in the polymer chains, which the other 
models do not describe. The elastic dumbbell model 
clearly is incapable of mimicking the responses asso- 
ciated with the many internal degrees of freedom of a 
polymer molecule; on the other hand, its very simplicity 
has made it a favorite for study, and it has in fact been 
quite useful in the development of an understanding 
of the relation between molecular motions and rheo- 
logical phenomena. 

To  some extent the choice of molecular model de- 
pends on the contemplated use of the kinetic theory 
results. To describe the mean-square end-to-end dis- 
tance or the radius of gyration of polymer molecules at  
equilibrium, statistical mechanics provides an explicit 
expression for the distribution function, and therefore 
rather complete molecular models can be used (such as 
the rotational isomeric state model used by Flory?. To 

describe the small-amplitude oscillatory experiment 
used for studying linear viscoelastic responses, one 
needs a model with many internal degrees of freedom, 
particularly if it is desired to describe effects at  high 
frequencies; the Rouse-Zimm chain model has proven 
to be quite useful in this instance. To describe the 
steady-state shear flow experiment, where the overall 
rotation of the molecule is the principal molecular 
motion involved, it is not particularly necessary to use 
a model with many beads since the small scale motions 
are not activated in the flow. To describe an elonga- 
tional flow experiment (and also shear flows with very 
large velocity gradients), in which the molecules are 
being stretched out considerably, a model that has a 
finite extensibility is required, such as the Kramers 
chain or an elastic dumbbell with a nonlinear spring 
that can be stretched only to a finite limit. If one wishes 
to be able to describe and interrelate all three of these 
types of nonequilibrium experiments quantitatively, 
then a more comprehensive model such as the Kirk- 
wood-Riseman chain has to be used, since it can de- 
scribe chain orientation, some small scale motions, finite 
extensibility, and chain stiffness. 

Kinetic Theory for Dilute Polymer Solutions. 
Illustrated with the Elastic Dumbbell Model 
(Reference 3, Chapter 10) 

In this section we show, by example, how one sets up 
the basic equations of the kinetic theory for polymers 
in a dilute solution. This presentation follows a simple, 
intuitive procedure, which enables one to formulate the 
problem by using only configuration-space ideas. This 
procedure is, however, inadequate if it is desired to use 
molecular models that contain constraints (fixed dis- 
tances and/or angles); for that purpose it is preferable 
to use a more general phase-space treatment (ref 3, 
chapter 14). In addition the phase-space treatment 
makes clearer the assumptions inherent in the more 
traditional configuration-space treatments. 

The simplest mechanical model of a polymer mole- 
cule is the elastic dumbbell of Figure 2d in which two 
beads are joined by a spring. The interbead vector, 
from bead “1” to “2” is called Q, and the tension in the 
spring is called F(c) Each bead is presumed to experi- 
ence a Stokes’ drag force with a friction coefficient fi 
the latter is the drag force divided by the bead velocity 
relative to the fluid velocity. The polymer solution hs 
a velocity field that is homogeneous: v = vo + [vr], 
where K is in general a function of time and r is the 
position vector. We want to know the probability, $- 
(Q,t)  dQ, that a dumbbell in the solution will have a 
configuration in the range dQ about Q at  time t. 

To get the configurational distribution function 
$(Q,t), we first write down the equation of continuity 
in the configuration space: 

In essence all this equation says is that when a dumb- 
bell leaves one configuration, it must turn up in another. 
Here [ [Q]] is the velocity-space average of the time rate 
of change of the configuration vector Q. This quantity 
in turn can be obtained by making a force balance on 

(9) P. J. Flory, “Statistical Mechanics of Chain Molecules”, Wiley, New 
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each of the beads and then subtracting the two equa- 
tions in order to get the balance of the forces for the 
internal motion: 

a 
a Q  -S([[&]] - [K-Q]) - 2kT- In $ - 2F(4 = 0 (6) 

The first term accounts for the hydrodynamic drag 
forces on the beads, the second term describes the 
Brownian motion forces, and the third term accounts 
for the forces transmitted through the connecting 
spring. When the force balance is solved for [[Q]], and 
when the latter is substituted into the continuity 
equation, we get the “diffusion equation”-the second- 
order partial differential equation for the configura- 
tional distribution function: 

Once the flow pattern and the spring force law have 
been chosen (Le., once K and FCC) are specified), then the 
“diffusion equation” can in principle be solved to get 
the distribution of configurations of the dumbbells. 

Macroscopic properties of the solution-mechanical, 
electrical, or thermal-can then be calculated by taking 
appropriate averages using the distribution function 
$(Q,t). Here we are concerned with the mechanical (i.e., 
rheological) properties and the macroscopic quantity 
of interest is then the stress tensor 7,  which appears in 
the equation of motion pDv/Dt = -Vp - [VT] + pg. 
The stress tensor accounts for the various mechanisms 
by which forces are transmitted through the fluid: by 
the motion of the solvent molecules, by the tensions 
in the springs of the dumbbells, and by the momentum 
transport of the beads of the dumbbells. The contri- 
bution due to the tensions in the springs must be av- 
eraged over all the possible configurations of the 
dumbbells. The final expression is the “Kramers form” 
of the stress tensor: 

7 = - n (QF(c)) + nkT6 (8) 

in which qs is the solvent viscosity, 6 is the unit tensor, 
n is the number density of dumbbells (i.e., polymer 
molecules) in the solution, and ( ) stands for I( )$(Q,t) 
dQ. A second expression for the stress tensor can be 
obtained by eliminating the spring force from the above 
expression by using the second tensorial moment of the 
diffusion equation (eq 7). The expression thus obtained 
is the “Giesekus form” of the stress tensor 

The subscript on ( indicates the “contravariant 
convected time derivative” 7(1) = d ~ / &  + (v.V7) - 

The discussion above for the elastic dumbbell model 
has emphasized the two main parts of the kinetic the- 
ory: (i) the derivation of a diffusion equation for the 
configurational distribution function $(Q,t) and (ii) the 
establishment of an expression for the stress tensor 7 

(or other macroscopic quantity). For more complex 
models the kinetic theory has the same general struc- 
ture; however, for models that have built-in constraints 
(fixed interbead distances or fixed angles between the 
rods) generalized coordinates must be used, and the 

((VV)+.T + 7.vV).  

formulation of the theory becomes somewhat more in- 
v ~ l v e d . ~ J ~  It should be evident that in the modeling 
the hydrodynamics has been treated only very roughly, 
with an isotropic, linear hydrodynamic drag law being 
postulated. Various refinements in the basic dumbbell 
model can be introduced in which one accounts for the 
solvent velocity field perturbation at  one bead owing 
to the motion of the other beads (“hydrodynamic 
interaction”); there is a rather extensive literature on 
this particular modification of the elementary theory 
(ref 3, section 10.6). Other modifications are noniso- 
tropic drag coefficients,ll { varying with interbead 
distance,12 and inclusion of a dashpot in parallel with 
the spring.13 These various “improved” dumbbell 
models have been very helpful in elucidating the rela- 
tion between models and rheological phenomena. 
However, they should not be taken too seriously, in- 
asmuch as the multibead chain models of Figure 2 will 
ultimately provide much more reliable results. 

Distribution Function and  Constitutive 
Equation for Hookean Dumbbells (Reference 3, 
Section 10.4) 

The simplest elastic dumbbell model is one with a 
linear spring, so that the spring connector force law is 
F(c) = HQ, in which H is the Hookean spring constant. 
For this type of dumbbell the diffusion equation for 
$(Q,t) (eq 7) has been solved to give14 

( ~ / 2 ~ k ~ ) 3 1 *  

& K x  ~ X P  [-(H/ 2kT) W:QQ)I $(Q,t) = 

(104 

in which AH = {/4H is the characteristic (relaxation) 
time for the elastic dumbbell solution and yioI is a finite 
strain tensor. The finite strain tensor is defined in 
terms of the motion of the fluid. If a fluid particle is 
at  a position r at  time t, then its position r’ at  some 
previous time t ’ is given by the “displacement function”: 
r‘ = r‘(r,t,t?; a displacement gradient tensor E can then 
be defined as E = [(d/ar’)rlt, and finally the finite 
strain tensor4 is given as yLoI = 6 - (E.Et). It is curious 
that the kinematic tensor that appears in the differen- 
tial equation is K = (Vv)+, whereas the kinematic tensor 
appearing in the solution (i.e., the finite strain tensor) 
is related to E. These two tensors are not simply related 
as may be seen from 

E(t,t’) = 6 + J t ~ ”  d t ”  + J , tJ , t (~”’-~”)  dt”’dt’’ + ... 
(11) 

t’ 
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which is valid for the homogeneous flow field being 
considered here; the abbreviated notation K” = ~ ( t ” )  has 
been used. 

We note in passing that the tensor a plays an im- 
portant role in the changes of the thermodynamic 
functions that occur when a polymer solution goes from 
a state of equilibrium to a state of flow. The changes 
in internal energy, entropy, and Helmholtz free energy, 
associated with the polymer solute, are15 AU = 1 / 2 n k T  
tr(a - 6), A S  = nk In (det and AA = l/,nkT[tr(a 
- 6) - In (det a)]. In a steady-state shear flow with shear 
rate +, it can be shown that the internal energy increase 
is AU = nkTXH2q2 and the entropy increase is A S  = nk 
In (1 + ~ H ‘ ) j / ~ ) l / ’ .  

Once the solution ’to the partial differential equation 
for $(Q, t )  has been obtained, the configurational dis- 
tribution function can then be substituted into the 
expression for the stress tensor to get the constitutive 
equation 

(12) 
This gives the stresses in an element of fluid in terms 
of the strains that the fluid element has suffered 
throughout all of the past history of the motion; the 
exponential function describes the “rapidly fading 
memory”. 

Alternatively one can get the constitutive equation 
by eliminating ( Q Q )  between eq 8 (written with F(c) 
= H Q )  and eq 9 to get 

7 = -77sY(1) + Tp (13a) 

Tp + Xflp( l )  = -nkTXHY(l) (13b) 

When this procedure is used, the constitutive equation 
for 7p, the polymer contribution to the stress tensor, is 
given as a differential equation; this result can be con- 
verted into the integral form above by using standard 
continuum mechanical  argument^.^^^ 

We have now shown, for one very elementary model, 
how one goes from the mechanical model to the com- 
plete constitutive equation. We see exactly how the 
various model parameters ({, H ,  n, ss) arise in the final 
constitutive relation; two of the parameters occur 
grouped together in the time constant AH = {/4H, and 
this quantity has to be determined ultimately from 
experimental data. 

Having obtained a constitutive equation we next must 
test it against measured material functions. From the 
Hookean dumbbell constitutive equation we can, for 
example, obtain the viscometric functions defined in eq 
2. For dilute solutions (for which the theory is in- 
tended) the functions s(?), @l(+), and --q2(?) are known 
experimentally to be monotone decreasing functions of 
the shear rate (see Figure l), but the Hookean dumbbell 
model gives constant values for all three of them, with 
\k2 = 0. One can also make comparisons with data for 
unsteady-state shear flows, for elongational flows, and 
still other flows, and it is found that in most of these 
other experiments, the model prediction is rather poor. 

(15) G. Marrucci, Trans. Soc. Rheol., 16, 321-330 (1972); G. C. Sarti 
and G. Marrucci, Chem. Eng. Sa . ,  28, 1053-1059 (1973): H. C. Booij, J .  
Chem. Phys , 80, 4571-4572 (1984) 

As a consequence one has to conclude that the simple 
Hookean dumbbell model, although mathematically 
tractable, is not sufficiently good to describe even 
qualitatively some of the observed phenomena. 

The next question is: how can the model be improved 
upon? At this point one can try several different 
modifications. One modification is to join N beads by 
N - 1 Hookean springs to form a chain (ref 3, chapter 
12); this model does give much better results in linear 
viscoelasticity16 (for example, in small amplitude os- 
cillatory motions), but it still yields viscometric func- 
tions that are independent of the shear rate. Another 
modification is the use of a finitely extensible nonlinear 
spring in the elastic dumbbell model since real mole- 
cules cannot be stretched out beyond some finite limit; 
we see in the next section that this simple modification 
of the basic model gives much better results. However, 
replacing the linear spring by a nonlinear one is only 
one of many modifications that have been tried.11J3 

An Approximate Constitutive Equation for 
Finitely Extensible Nonlinear Elastic (FENE) 
Dumbbells (Reference 3, Section 10.5) 

A rather simple nonlinear-spring force law is3J7 

This kind of spring is Hookean at  small values of the 
bead separation and cannot be stretched beyond a 
separation of Qo. For this model there are two time 
constants: AH = { /4H and XQ = {Qo2/12kT; instead of 
the latter we use the ratio b = 3xQ/XH = HQo2/kT.  
Comparisons of calculated rheological properties with 
experimental data18J9 indicate that realistic values for 
the parameter b are in the range from 30 to 300. The 
Kramers stress tensor expression is now (from eq 8): 

We would now like to eliminate the ( ) quantities be- 
tween eq 9 and 15, following the method we used for 
Hookean dumbbells, but this obviously cannot be done. 
However, we can get an approximate constitutive 
equation if we replace eq 15 by 

+ (1 - cb)nkT6 (16) 
(QQ) 

7 = - q y  s (1) - n H  
1 - (Q2/Qo2)  

That is, we replace the average of the ratio by the ratio 
of averages and then try to compensate somewhat for 
the error thus introduced by including an extra isotropic 
contribution containing the parameter t .  We then 
choose to be 2/[b(b + 2)] in order to ensure that eq 
16 is correct at  equilibrium. Then one can eliminate 
the two averages (QQ) and ( Q2/Q2) from eq 9, eq 16, 
and the trace of eq 16 to get the following approximate 
constitutive equation (almost the same equation was 
obtained by Tanner20 by a different procedure): 

(16) J. D. Ferry, “Viscoelastic Properties of Polymers”, 3rd ed., Wiley, 

(17) H. R. Warner, Jr., Ind. Eng. Chem. Fundam., 11,379-387 (1972). 
(18) R. L. Christiansen and R. B. Bird, J .  Non-Newtonian Fluid 

(19) Y. Mochimaru, J .  Non-Newtonian Fluid Mech.,  9, 157-178, 

New York, 1980. 

Mech.,  3, 161-177 (1977/1978). 

179-194 (1981). 
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2~~ + A g p ( l )  - AX[7p - (1- tb)nkTG]D’ In Z / D t  = 
-(1 - tb)nkTAHY(l) (17a) 

2 = 1 + (3/b)[(l - tb) - tr(7,/3nkT)] (17b) 

In the limit that b becomes infinite (Hookean dumb- 
bells), the quantity 2 goes to unity and the constitutive 
equation simplifies to eq 13; thus 2 is seen to describe 
the influence of the nonlinear springs. Although eq 17 
is an approximate constitutive equation, it leads to 
results which are in remarkably good agreement with 
those one gets by solving the diffusion equation (eq 7) 
numerically and then computing the components of the 
stress tensor from eq XZ1 

The constitutive equation in eq 17 has been found to 
describe quite well the viscosity curves for several 
moderately concentrated polymer  solution^,^^ and it 
seems to describe a number of other rheological prop- 
erties qualitatively. It has also been used to solve 
several flow  problem^;^^^^^^^ once the velocity fields have 
been obtained, the trwe of eq 16 can be used to get the 
molecular stretching (Q/Q?). For this particular model 
then we can go through the entire sequence: molecular 
model -+ constitutive equation - solution t o  fluid 
dynamics problem - molecular stretching in a flow 
field. It is this sequence of activities that we would like 
to be able to carry out for more realistic molecular 
models, such as multibead chains, which have a spec- 
trum of relaxation times. 
Model of Interacting Kramers Chains as a 
Model for a Polymer Melt 

There are two kinds of theories for polymer melts: 
the older ones are the network theoriesz4 in which the 
melt is envisioned as a temporary network formed by 
the transient physical junctions between the strands of 
the constituent molecules; the newer ones are the mean 
field t h e o r i e ~ , ~ ~ ~ ~ ~  in which one modifies the dilute so- 
lution theory and looks just at the motion of a single 
molecule as it moves about with its motion drastically 
limited by the other molecules in its immediate vicinity. 
In the network theories one has to make empirical 
statements about the rates of junction creation and 
destruction, whereas in the mean field theories one has 
to make empirical statements about the drag force on 
the beads and the Brownian motion forces-and both 
of these now being taken to be nonisotropic; the Brown- 
ian motion is presumed to be acting only along the 
polymer backbone, and the resultant back-and-forth 
wiggling is called “reptation”. 

We discuss here the results of a mean-field theory26 
in which the polymer molecules are represented by 
Kramers chains. Then the use of the nonisotropic hy- 
drodynamic drag and the reptational Brownian motion 
leads after considerable effort and several simplifying 
assumptions to the following constitutive equation (the 
Curtiss-Bird equation): 

(20) R. I. Tanner, Trans. SOC. Rheol., 19, 37-65 (1975). 
(21) X. J. Fan, J .  Non-Newtonian Fluid Mech., 17, 125-144 (1985). 
(22) Y. Mochimaru, J .  Non-Newtonian Fluid Mech., 12, 135-152 

(23) L. E. Wedgewocd and R. B. Bird, in “Integration of Fundamental 

(24) A. S. Lodge, R. C. Armstrong, M. H. Wagner, and H. H. Winter, 

(25) M. Doi and S. F. Edwards, J. Chem. SOC., Faraday Trans. 2,74, 

(26) C. F. Curtiss and R. B. Bird, J. Chem. Phys., 74, 2016-2025, 

(1983). 

Polymer Science and Technology”; Elsevier: London, (1985). 

Pure Appl .  Chem., 54, 1349-1359 (1983). 

1789-1801, 1802-1817, 1818-1832 (1978); 75, 38-54 (1979). 

2026-2033 (1981). 

t 
7 = N n k T [  y336 - C(Imp(t  - t?A(t,t? dt’- 

t 
t A ~ : l ~ v ( t  - t?B(t,t’) dt ’ ]  (18a) 

p(s)  = - ( A / 2 ) d ~ / d ~  (18b) 

A = ( 1 / 4 ~ ) S [ l  + ( y [ o ] : ~ ~ ) ] - 3 / 2 ~ ~  du (18d) 

B = ( 1 / 4 ~ ) s [ 1  + ( ~ [ o ] : ~ ~ ) ] - 3 ~ z ~ ~ ~ ~  du (184 

Here N is the number of beads in the Kramers bead- 
rod chain, a is the length of a rod in the chain, A = 
N3+@{az/2kT is the time constant, y[O] = (At.A) - 6 is 
another finite strain tensor (A is the tensor inverse to 
E), u is a unit vector described by polar angles 0 and 
4, and du  = sin 0 d0 d4  is an element of area on a unit 
sphere. The model contains a total of five constants: 
the number of beads in the chain N ,  the rod length a, 
the bead friction factor {, the “link tension coefficient” 
t which is between zero and unity, and the “chain con- 
straint exponent p which appears to be about 0.3-0.5; 
several of these parameters (5; p, and a)  are lumped 
together in the time constant A, which has to be de- 
termined from experiments. The constitutive equation 
emerging from the Doi-Edwards kinetic theory is, apart 
from a multiplicative constant, a special case of eq 18 
with t = 0 and p = 0. 

In the final constitutive equation there are two in- 
tegral terms, one containing a second-order tensor, A, 
and another containing a fourth-order tensor, B. Both 
integrals have the same structure: the integrand is a 
product of a term (p or v) involving only the time con- 
stant of the fluid, and another term involving only the 
kinematics of the flow field ( A  or B) .  Note that this 
same type of factorization manifested itself in eq 12 for 
the dilute solution of elastic dumbbells. It has been 
shown recentlyz7 that this model (eq 13) for a polymer 
melt shows rod climbingz8 if t > 1/8; the Doi-Edwards 
theory (even for polydisperse systems) cannot describe 
rod climbing. 

Extensive comparisons have been made between the 
rheological properties calculated for this model and the 
experimental measurements for monodisperse liquids 
made of chainlike polymers.z9 It is possible to choose 
values of N ,  A, and E to fit the experimental data for 
several different types of polymeric liquids (both un- 
diluted polymers and very concentrated solutions). The 
constitutive equation given above has recently been 
used for making fluid dynamics ca l c~ la t ions .~~  The 
theory has been extended to polydisperse systems by 
curt is^;^^ the time constant for species a in the mixture 
is found to be A, = N1+@N,zraz/2kT, where N is the 
number average of N ,  (number of beads in chain of 
molecular weight M,). If one uses-the log-normal dis- 

(27) 0. Hassager, J. Rheol. (N.Y.), 29, 361-364 (1985). 
(28) D. D. Joseph, G. S. Beavers, A. Cers, C. Dewald, A. Hoger, and 

P. T.  Than, J. Rheol. (N.Y.), 28, 325-346 (1984). 
(29) R. B. Bird, H. H. Saab, and C. F. Curtiss, J .  Phys. Chem., 86, 

1102-1105 (1982); R. B. Bird, H. H. Saab, and C. F. Curtiss, J .  Chem. 
Phys., 77, 4747-4757 (1982); H. H. Saab, R. B. Bird, and C. F. Curtiss, 
ibid., 77, 4758-4766 (1982). 

(30) D. S. Malkus and B. Bernstein, J .  Non-Newtonian Fluid Mech., 
16, 77-116 (1984). 

(31) C. F. Curtiss, to appear in Chapter 19 of the 2nd edition of ref 3. 
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Table I 
Constants in t h e  Retarded-Motion Expansion from Kinetic Theory Calculationsa (Made Dimensionless with a k  ) 

FENE dumbbells multibead rods freely jointed 
order k const (dilute solution)* (dilute solution)c bead-rod chain (melt)d 

1 E  - + -  
a ,  5 h ,  60 90 

2 h  3- [l - - ( 1 - 2 ) ]  

2 b ,  I la2 0 1 - - t -  
1050 1050 

3 

5 
- b 3 ( 2 b  + 1 1 ) / ( 2 b  + 7 )  - b, la ,  

( b  - 5 ) ( b  + 7 ) ( b  + 9 )  

17 

100 800  
-- 

176 - 17 -- - 12 1 h -[ 1 - -( 1 --‘)I 3 b,2 la ,  4b31(2b + 7 )  
117 600 352 800 ( b  + 5 ) ( b  4. 7 ) ( b  + 9 )  35  2 A ,  

17 b ,  : 1 1  l a ,  3 b 3 / ( 2 b  + 7 )  
-[ 3 1 + -( 6 h  1 - 2)] 

( b  + 5) ’ (b  + 7 ) ( b  + 9 )  35 5 h ,  705 600 

12 kT h 1 f k  nkTh,  NnkThk 
a The coefficients tabulated here are for the “retarded-motion expansion”, a constitutive equation that expresses the 

stress tensor for flows in which the-velocity is changing slowly in space and t ime (see ref 4,  Chapters 8 and 9):  7 = 
- [ b , y ( , ) +  b 2 y ( , )  + b , ,  * L ~ ( I ) ’ ~ ( l ) : +  b , Y ( 3 ) +  b 1 2 : Y ( l ) . ~ ( 2 ) +  Y ( ~ ) . Y ( , ) ~ +  b l ~ , , ~ ~ ~ l ~ : ~ ~ l ~ ~ ~ ~ l ~ +  ... I i nwhich  Y(])= v u +  
(vu)?  and the  higher order rate-of-strain tensors are defined by  Y ( , ~ + ,  = Dy(n) -  VU)^, ,(n) + y ( n ) . ~ u } .  Note that b ,  G 

Q , ~ ,  b ,  E - q , 
“substantial derivative”. 
Armstrong, 60,  724-728 ( 1 9 7 4 ) ;  the  parameters hH and b are defined after eq 14. The  constants for the multibead rod 
with Rotne-Prager-Yamakawa hydrodynamic interaction were obtained by X. J. Fan, using R .  B. Bird and C. F. Curtiss, J. 
Non-Newtonian Fluid Mech.,  14, 85-101 (1984) .  
hN(2h , - cZ)  in the  Bird-Curtiss publication, 
number of beads from -0 .5000 for  N = 2 to  -0 .0284 for N = 6 and from + 0.0102 for N = 7 to + 0.3082 for  A’= 70. 

J, Chem. Phys., 7 4 ,  2016-2025, 2026-2033 ( 1 9 8 1 ) .  The parameters N ,  h ,  and e are defined after eq 18. 

Dt 
12, and b ,  \k , ,o  where the subscript zero designates zero-shear-rate properties; t he  D/Dt operator is the 

b The  constants for the FENE dumbbell with no  hydrodynamic interaction were obtained by R. C. 

The time constants h ,  and h ,  are abbreviations for h ~ ( h , & * )  and 
For osculating beads the quantity [l- ( h , / h ,  ) ]  varies monotonically with the 

The  constants for an undiluted system of interacting Kramers bead-rod chains are taken from C. F. Curtiss and R. B. Bird, 

tribution of molecular weights, this theory gives for the 
steady-state shear compliance J,O = \kl,0/27702 - !MzL 
MW),4 whereas one experimental data correlation gwes 
an exponent of 3.7. The Doi-Edwards theoryz5 gives 
an exponent of 9. 

Uses of the Kinetic Theory Results 
Most kinetic theories involve lengthy and tedious 

developments, and few people have the patience to work 
their way through them. However, as may be seen in 
the several examples cited above, the final results can 
often be cast in readily understandable form, and the 
constants that appear in the final constitutive equation 
usually have simple physical meanings. The kinetic 
theory results that are now being obtained can be used 
in a number of ways: 

a. Kinetic theory provides constitutive equations for 
numerical solution to flow problems. The numerical 
solutions of nontrivial flow problems require long and 
expensive computational Realistic flow prob- 
lems often involve complex flow geometries with very 
unusual combinations of stretching and shearing flows. 
The constitutive equations obtained from kinetic theory 
probably have a better chance of success then do em- 
pirical equations, provided that sensible physical ideas 
are incorporated in the theory. 

b. The constitutive equations generated by kinetic 
theory can often suggest useful forms for empirical 
constitutive equations. In the kinetic theory develop- 

(32) M. Kotaka, Macromolecules, 17, 895-898 (1984). 
(33) M. J. Crochet, A. R. Davies, and K. Walters, ‘Numerical Simu- 

lation of Non-Newtonian Flow”; Elsevier: Amsterdam, 1984. 

ment one is compelled to use rather simple molecular 
models and to make some mathematical and physical 
assumptions in the derivations. Nonetheless the con- 
stitutive equations produced by kinetic theory have 
suggested the kinds of kinematic tensors that should 
be used, the kind of factorization that may be profitable 
to explore in integral models, and the kinds of nonlin- 
earities that might appear in differential models. 

c. Kinetic theory has also provided the basis for 
interrelating various rheological properties and also for 
suggesting relations between rheological properties and 
optical properties (such as flow birefringence and light 
scattering) or transport properties (such 8s translational 
diffusivity). 

d. Kinetic theory gives information about the mo- 
lecular stretching and molecular orientation in flow 
fields, and this kind of information is of interest in 
polymer processing. 

e. By studying the rheological consequences of var- 
ious kinds of modeling, one can begin to get information 
about the structure-property relationships. For exam- 
ple, molecular theory predicts that steady elongational 
viscosity for dilute solutions should be a monotone 
function of the elongation rate3 whereas the same 
quantity for polymer melts should go through a maxi- 
mum and then decrease with elongation rate.29 Also, 
a table given on pp 627-629 of ref 3 shows how the 
zero-shear-rate viscometric functions are affected by 
chain length, molecule stiffness, symmetry, location of 
side groups, and chain stretchability. 

f. Kinetic theory also gives information about some 
of the constants and functions that appear in various 
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continuum-mechanics expansions, As one example, we 
give in Table I the values of the constants in the re- 
tarded motion expansion (through third order) from 
several different molecular theories. For a wide range 
of models we find that the second- and third-order 
constants can be arranged in order of decreasing mag- 
nitude: lb21 > lblll (bll changes sign for multibead rods), 
and b3 > b12 > blill. As another example, we point out 
the fact that for the multibead-rod model the kernel 
functions in a memory-integral expansion have been 
obtained.34 

g. Kinetic theory calculations provide important 
background material which will be necessary in order 
to check the techniques of nonequilibrium Brownian 
dynamics that will be useful for probing the details of 
molecular motions in polymeric 

h. Kinetic theory can provide valuable information 
about the behavior of polymer blends. Most industrial 
polymers are polydisperse (they are mixtures of poly- 
mers of various molecular weights), and the kinetic 
theory of mixtures can show what the effect of poly- 
dispersity will be on various macroscopic properties. 

i. The kinetic theory of polymers gives results from 
time to time that suggest experiments that need to be 
done. For example, according to the FENE dumbbell 
model there should be an overshoot in the mean-square 
end-to-end distance at the start up of a steady shear 
flow;lg this suggests that one should do a light-scattering 
study of this flow system. The multibead-rod theory 
cited earlier suggests that there should be a change in 
the sign of the second normal-stress coefficient as one 
goes from short rods to long rods (see footnote c, in 
Table I); perhaps this sign change could be observed 
in the tilted-trough e ~ p e r i m e n t . ~ ~  Many molecular 
models lead to a relation between the normal stress 
coefficient \kl and the relaxation of the shear stress T ~ ~ ,  

after the cessation of steady shear flow (see eq 12.4-33 
of ref 3); this relation has not been sufficiently well 
tested for well-characterized fluids. In addition, Mo- 
chimaru’s recent  calculation^^^ suggest that there should 

(34) R. B. Bird and C. F. Curtiss, J.  Non-Newtonian Fluid Mech., 14, 

(35) P. J. Dotson, J .  Chem. Phys., 79,5730-5731 (1983); Ph.D. Thesis, 
University of Wisconsin, 1984. H. H. Saab, R. B. Bird, X. J. Fan, and 
P. J. Dotson, University of Wisconsin Rheology Research Center, Report 
No. 97 (Nov 1984). 

(36) M. Keentok, A. G. Georgescu, A. A. Sherwood, and R. I. Tanner, 
J.  Non-Newtonian Fluid Mech., 6, 303-324 (1980). 

85-101 (1984). 

be “velocity overshoot” in unsteady Couette flow. 

Challenges €or the Future 
Considerably more work needs to be done in obtain- 

ing constitutive relations from kinetic theory; the 
evaluation of each new molecular model must include 
a fairly complete comparison with experimental data 
on material functions, but, as pointed out earlier, such 
data are in short supply for well-characterized fluids. 

Much help will be obtained in the future from 
Brownian dynamics and molecular dynamics simulation 
techniques; such techniques will become more impor- 
tant with the widespread availability of supercomputers. 
The simulations should be very helpful in assessing 
some of the assumptions in kinetic theories, such as the 
“reptation” idea in undiluted polymers, and the 
“equilibration-in-momentum-space” assumption com- 
mon to all dilute solution theories. These techniques 
should also be used to study nonhomogeneous flows, 
wall effects, differential migration separations, and 
molecular stretching in converging-diverging flows. 

The various assumptions in all kinetic theories need 
to be challenged. For example, the widespread use of 
Stokes law expressions to describe polymersolvent and 
polymer-polymer interactions needs to be investigated. 
One crucial question here is whether or not the Stokes 
law interactions can describe quantitatively various 
observed recoil phenomena. 

The constitutive equations suggested by molecular 
theory need to be used in fluid dynamics calculations, 
particularly those that are relevant to polymer pro- 
cessing, rubber technology, lubricant behavior, and 
biomedical  problem^.^^^^^ 
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